The Finite Volume-Complete Flux Scheme for Advection-Diffusion-Reaction Equations

نویسندگان

  • J. H. M. ten Thije Boonkkamp
  • Martijn Anthonissen
چکیده

We present a new finite volume scheme for the advection-diffusion-reaction equation. The scheme is second order accurate in the grid size, both for dominant diffusion and dominant advection, and has only a three-point coupling in each spatial direction. Our scheme is based on a new integral representation for the flux of the one-dimensional advection-diffusion-reaction equation, which is derived from the solution of a local boundary value problem for the entire equation, including the source term. The flux therefore consists of two parts, corresponding to the homogeneous and particular solution of the boundary value problem. Applying suitable quadrature rules to the integral representation gives the complete flux scheme. Extensions of the complete flux scheme to two-dimensional and time-dependent problems are derived, containing the cross flux term or the time derivative in the inhomogeneous flux, respectively. The resulting finite volume-complete flux scheme is validated for several test problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations

Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...

متن کامل

Approximation of stochastic advection diffusion equations with finite difference scheme

In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm Ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes,...

متن کامل

A Finite Volume Ventcell-Schwarz Algorithm for Advection-Diffusion Equations

This paper provides a new fully discrete domain decomposition algorithm for the advection diffusion reaction equation. It relies on the optimized Ventcell–Schwarz algorithm with a finite volume discretization of the subdomain problems. The scheme includes a wide range of advection fluxes with a special treatment on the boundary. A complete analysis of the scheme is presented, and the convergenc...

متن کامل

Uniform Second Order Convergence of a Complete Flux Scheme on Unstructured 1D Grids for a Singularly Perturbed Advection-Diffusion Equation and Some Multidimensional Extensions

The accurate and efficient discretization of singularly perturbed advection-diffusion equations on arbitrary 2D and 3D domains remains an open problem. An interesting approach to tackle this problem is the complete flux scheme (CFS) proposed by G. D. Thiart and further investigated by J. ten Thije Boonkkamp. For the CFS, uniform second order convergence has been proven on structured grids. We e...

متن کامل

The Complete Flux Scheme for Spherically Symmetric Conservation Laws

We apply the finite volume method to a spherically symmetric conservation law of advection-diffusion-reaction type. For the numerical flux we use the so-called complete flux scheme. In this scheme the flux is computed from a local boundary value problem for the complete equation, including the source term. As a result, the numerical flux is the superposition of a homogeneous flux and an inhomog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2011